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Abstract. Neural rendering has emerged as a powerful paradigm for
synthesizing images, offering many benefits over classical rendering by using
neural networks to reconstruct surfaces, represent shapes, and synthesize novel
views, either for objects or scenes. In this neural rendering, the environment is
encoded into a neural network. We believe that these new representations can
be used to codify the scene for a mobile robot. Therefore, in this work, we
perform a comparison between a trending neural rendering, called tiny-NeRF, and
other volume representations that are commonly used as maps in robotics, such
as voxel maps, point clouds, and triangular meshes. The target is to know the
advantages and disadvantages of neural representations in the robotics context.
The comparison is made in terms of spatial complexity and processing time
to obtain a model. Experiments show that tiny-NeRF requires three times less
memory space compared to other representations. In terms of processing time,
tiny-NeRF takes about six times more to compute the model.
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1 Introduction

The recent and continuous advances in neural rendering have shown numerous
applications and became a new field of study in the graphics community. Some of
these efforts are in the implicit functions which represent shapes in three dimensions
(3D) [3, 15]. The tool for creating the neural representations is a multi-layer perceptron
(MLP). This MLP works as a general implicit function approximator. On the other hand,
there are plenty of methods to reconstruct surfaces, and represent shapes and volumes in
3D space. Some examples are meshes [2], point clouds [1], voxel maps [7], and octrees
[4]. The latter offers diverse capabilities to reconstruct or create 3D models and those
have diverse applications in robotics and artificial vision [18, 10, 17, 8].

In this paper, we perform a comparison between neural representations, point clouds,
meshes, and voxel maps in terms of memory space and processing time required
to obtain a model. The main objective is to show, clarify or put some important
considerations for future works related to object reconstruction.
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Fig. 1. General diagram of the experiments. Given a dataset which contains positions in 3D space
and images, the data required is extracted with a simulator, as a result the three representations to
be compared are obtained.

The MLP employed follows the architecture proposed in tiny-NeRF by the authors of
Neural Radiance Fields (NeRF) [6]. We design a grid search-based experimentation. For
the tiny-NeRF, the independent variables are i) learning rate ii) encoding functions and
iii) seed; the resulting grid search has 36 experimental units. In addition, the experiment
employs the same capturing positions to create the neural model, point cloud, and voxel
map. The experiment shows that neural representations require 3 times less memory to
store a model but on the other hand they takes about 6 times more to compute a model
concerning the other representations.

The rest of the paper is structured as follows. Section 2 introduces the required
concepts. Section 3 presents the related work and advances of volume, surface and
neural representations. In Section 4, we present the methodology used to perform
the experiments carry out in Section 5, where results are also reported. Finally, the
conclusions and the future work are given in Section 6.

2 Preliminaries

In this section, we define certain concepts required to understand the topics tackled
in this paper. A commonly used data representation is the point cloud, that is a
representation of body shapes and is made by points mapped in the 3D space which
are usually produced by sensors or scanners.

The point cloud could be processed in order to create more accurate representations.
Meshes are representations of shapes formed by a set of nodes and connections between
them, one of the advantages is that it has a range of different resolutions which means
that it could be as accurate as wanted but the more resolution those have the more
computation it needs to complete the representation. Another 3D shape representation
is the voxel, which is a cube of unitary distance, and the union of a set creates a voxel
map representation.
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Fig. 2. World setup. An object is placed in the simulated world.

The voxel map represents shapes of objects or it is possible to represent the
volume/solid by using a voxel carving technique. Those representations are commonly
used to reconstruct shapes, objects and maps.

According to [16] there is no definition for neural rendering and suggests a definition
for Neural Rendering as: “Deep image or video generation approaches that enable
explicit or implicit control of scene properties such as illumination, camera parameters,
pose, geometry, appearance, and semantic structure.”

A recent proposed neural rendering technique is NeRF [6], it became one of the
most popular and extensively used to render objects in 3D space due to its capabilities
to create novel views in the reconstructed scene.

NeRF [6] is an approach for creating novel view synthesis, it uses a set of input
views to optimize a continuous volumetric scene function, as a result, this optimization
produces a novel view of a complex scene. Its input is a 5D vector function, which
contains the 3D space location (x,y,z) and 2D viewing direction (θ, ϕ) and the output
is an emitted color: Red, Green, Blue (r,g,b) and volume density (σ). NeRF uses the
concept of encoding functions where the purpose of these functions is to map the input
into a higher dimensional space where the MLP can more easily approximate higher
frequency functions.

To generate a NeRF from a specific viewpoint, first, a set of rays are marched through
the scene, the data generated is fed into the neural network and produce a set of RGBσ
values then the data is structured into a 2D image.

3 Related Work

The 3D reconstruction of spaces and objects is not a new research topic and has many
approaches which reconstruct scenes employing different techniques, the accuracy of
the volumetric representations relies on the resolution employed to map, and the more
resolution is wanted the more computation is needed which means more time is needed
to achieve a good result.

Volume representations in 3D space have many methods to represent synthetically
objects, like meshes [2], point clouds [1], voxel maps [7], and octree [4]. Those
offer diverse capabilities to reconstruct or create 3D models and those have diverse
applications in robotics and artificial vision [8, 10, 17, 18]. Despite the popularity
that they have, resolution of the representations is one of it cons. Also, the memory
consumption between them is variable and usually requires memory in the order of
Megabytes (MB).
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Fig. 3. Capturing poses. In this figure it is shown the 106 poses used, the frame of reference is the
described by OpenGL [5] for synthetic cameras.

Neural rendering has gained popularity since it employs a multi-layer perceptron
(MLP) to achieve these tasks [11, 12]. In [3, 15] are presented different techniques to
represent shapes and volumes in 3D space.

The proposed methods concentrate its effort in creating those representations and
compare it with state-of-the-art. On the other hand, in [14] they propose an approach
for volume compression and compare it with voxel maps. A Simultaneous Localization
And Mapping system is proposed by [13], they compare it with truncated signed
distance function (TSDF) method, both approaches do a comparison in terms of
memory consumption, and stand out a good performance.

We believe that time taken in the process of the reconstructions is an important
variable to take in consideration, and that the consulted approaches do not report those
differences in terms of time.

4 Methodology

We want to experiment with neural representations, exploring the advantages that
those have over existent representations used for 3D space reconstruction. We do a
comparison between neural representations proposed by the authors of NeRF [6], and
three different spatial representations used to model objects, such as meshes, voxel
maps, and point clouds.

We use a dataset that contains 106 (see Fig. 3) pairs of sensor poses, and using
those poses, we extract the required data in order to create the proposed representations
(Figure 1). The main reason to use one dataset is that we want to give the algorithms the
same point of view for a fair comparison in terms of data that could be extracted given
the poses in the data set.

4.1 Dataset

Given that we propose a comparison with synthetic data, we use a simulator to render
images of an object (simulating a camera inside the simulated world). See Figure 2.
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(a) Frontal point of view. (b) Lateral point of view.

Fig. 4. Images of the object of study extracted using Pybullet.

(a) Frontal point of view. (b) Lateral point of view.

Fig. 5. Neural representations created with the Tiny-NeRF.

Then, a world is needed to set up, configure it with a ground, and place the mesh
of the object of interest in it. From the synthetic datasets used in NeRF [6], we apply
transformation matrices as in Equation (1):

T =

(
R p
0 1

)
, (1)

where R indicates the rotation matrix, whose values represent the rotations over the
three axes, and the p indicates the position vector, whose values contain the position of
a body in a 3D space (x, y, z). Please see Figure 3.

Having those positions in 3D space the required datasets are extracted, that
is RGB images, ray casting points, and depth data. All in order to create the
proposed reconstructions.
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Table 1. Grid search. ID express an identification number, the variable values employed for each
experiment with Tiny-NeRF and the results expressed in terms of Loss and PSNR.

ID Factor 1 Factor 2 Factor 3 Metric 1 Metric 2

Seed Learning Rate
Coding
functions

Loss PSNR (dB)

1 2057 5× 10−3 6 0.5463 2.6257
2 2057 5× 10−3 9 0.0030 25.2288
3 2057 5× 10−3 10 0.0493 13.0715
4 2057 5× 10−3 12 0.5463 2.6257
5 2057 5× 10−4 6 0.5463 2.6257
6 2057 5× 10−4 9 0.0025 26.0206
7 2057 5× 10−4 10 0.5463 2.6257
8 2057 5× 10−4 12 0.5463 2.6257
9 2057 5× 10−5 6 0.5463 2.6257
10 2057 5× 10−5 9 0.0026 25.8503
11 2057 5× 10−5 10 0.5463 2.6257
12 2057 5× 10−5 12 0.5463 2.6257
13 7461 5× 10−3 6 0.0921 10.3574
14 7461 5× 10−3 9 0.0032 24.9485
15 7461 5× 10−3 10 0.5463 2.6257
16 7461 5× 10−3 12 0.5463 2.6257
17 7461 5× 10−4 6 0.5463 2.6257
18 7461 5× 10−4 9 0.0026 25.8503
19 7461 5× 10−4 10 0.5463 2.6257
20 7461 5× 10−4 12 0.5463 2.6257
21 7461 5× 10−5 6 0.5463 2.6257
22 7461 5× 10−5 9 0.0025 26.0206
23 7461 5× 10−5 10 0.5463 2.6257
24 7461 5× 10−5 12 0.5463 2.6257
25 5680 5× 10−3 6 0.5463 2.6257
26 5680 5× 10−3 9 0.0032 24.9485
27 5680 5× 10−3 10 0.5463 2.6257
28 5680 5× 10−3 12 0.0033 24.8149
29 5680 5× 10−4 6 0.5463 2.6257
30 5680 5× 10−4 9 0.0027 25.6864
31 5680 5× 10−4 10 0.5463 2.6257
32 5680 5× 10−4 12 0.0024 26.1979
33 5680 5× 10−5 6 0.5463 2.6257
34 5680 5× 10−5 9 0.0027 25.6864
35 5680 5× 10−5 10 0.5463 2.6257
36 5680 5× 10−5 12 0.0027 25.6864

4.2 Point Cloud and Voxel Map

Open3D library [21] allows us to visualize objects and create representations. For
the point cloud, it is created by the use of ray-tracing which emits synthetic rays in
simulation when those touches or intersect with a surface return a value, having this is
possible to calculate in R3 and map them into points in space, creating a point cloud.
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Table 2. Average of the results in grid search.

LR Functions Loss PSNR (dB)
5× 10−3 6 0.3949 4.0351
5× 10−3 9 0.0031 25.0863
5× 10−3 10 0.3806 4.1953
5× 10−3 12 0.3653 4.3735
5× 10−4 6 0.5463 2.6256
5× 10−4 9 0.0026 25.8502
5× 10−4 10 0.5463 2.6256
5× 10−4 12 0.365 4.3770
5× 10−5 6 0.5463 2.6256
5× 10−5 9 0.0026 25.8502
5× 10−5 10 0.5463 2.6256
5× 10−5 12 0.3651 4.3758

This process is repeated every capture, then the resulting points are concatenated and
filtered to reduce possible noise created by captures. We create a voxel model using the
technique of voxel carving, using a pinhole camera and homogeneous transformation
matrix is possible to create a voxel dense given the resulting images and a silhouette to
employ a carve silhouette method provided by Open3D, resulting in a voxel model.

4.3 Tiny-NeRF

As explained above, NeRF [6] receives as input a set of data that express location and
viewing direction where the output is an emitted color and a volume density.

Tiny-NeRF is a simplified version of NeRF, which is an MLP conformed by 6
fully-connected ReLU layers each with 256 filter size, one fully-connected ReLU layer
with a filter size of 64 then an output layer that expresses the emitted RGBσ at a certain
position with a four filter size layer. The process starts by getting rays according to the
pose, then the returned rays become useful to map 3D points which are going to be fed
into Tiny-NeRF input, the output of the model is used to compute opacities and RGB
data, finally the weights are calculated and the process is repeated.

5 Experiments

We evaluate the Tiny-NeRF describing a grid search where certain variables are
changed over the experiments. Using the same position captures we perform
reconstruction with voxels and a point cloud. All the data was synthetic and obtained
using Open3D.

Our experiments run in Python and the libraries employed are Pytorch [9] for the
MLP or neural representations, Pybullet and Open3D [21].The hardware employed for
those experiments is the CPU/GPU provided by Colab which allows us to use a Graphic
card: Tesla P100-PCIE-16GB with 16GB of GPU-RAM, 25.46 GB of RAM, and 166.83
GB in Hard disc drive.
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(a) Simulation captures.

(b) Neural representations.

Fig. 6. Qualitative results using Tiny-NeRF. We extracted different poses and visualizations.

5.1 Tiny-NeRF Training

Tiny-NeRF is a simplified version of NeRF, which is an MLP conformed by six
fully-connected ReLU layers each with a 256 filter size, one fully-connected layer
with a filter size of 64 then an output that expresses the RGBσ values. The grid search
proposed to vary over three variables and the values are:

– Seed: 2057, 5680 and 7461,
– Learning rate: 5x10−3, 5x10−3 and 5x10−3,
– Encoding functions : 6, 9, 10 and 12.

For the Neural Networks (NN) training a commonly used metric is Loss since it
evaluates how bad predicts on an example, the Peak Signal-to-Noise Ratio (PSNR) is
used to measure the ratio between a signal and the noise which affects the representation
of this signal; in this case, the PSNR is used to measure how well the Tiny-NeRF does
a representation compared to the original images. On the other hand, to measure time
the unit employed is seconds (s) and to measure space in memory we utilize MB.

To obtain the data set we employed Pybullet simulator which let us set simulated
worlds, set objects in it (Figure 2) and create pinhole cameras to extract or create
synthetic images, among other things. Once the object is set in the world, it is possible
to create a synthetic camera given its position, target position, field of view (FOV), near
and far plane distance, weight and height of the image. The positions are given by the
data capturing positions, the FOV is 17.70◦, the weight and height are equal to 100.
Resulting in images like the ones in Figure 4.

The experiments with the Tiny-NeRF are iterated for five thousand epochs each and
the variables are modified at each experiment, the number of experiments is 36. The
results of this experiment are shown in Table 1. The entire experiment took about 65,100
seconds which means that approximately every experiment took 1,808.33 seconds to be
completed. To summarize the information in Table 1, the average was calculated (Table
2) in order to easily extract which parameters perform better results with the MLP.
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(a) Point cloud reconstruction. (b) Voxel reconstruction.

Fig. 7. Volumetric reconstructions.

Analysis of experiments showed that nine coding functions help the Tiny-NeRF
to accurately (Figure 5) create a neural representation of the object, and the learning
rate helped to achieve good performance in fewer epochs. Additionally, the neural
representations took 1,808.33 seconds to complete an experiment, and the memory
space to store a representation is 1.5 MB.

Additionally to PSNR, we perform evaluations over two more metrics SSIM and
LPIPS [19, 20] which are commonly used to measure distances over images, looking
for a measure of how well the Tiny-NeRF is rendering views. Comparing images like
the ones in Fig. 6 the metrics proposed gave as a result 0.8481 and 0.0565, respectively.
Those results affirm that the representations are good in quality but it could improved.

5.2 Comparison of Tiny-NeRF Versus Spatial Representations

Once Tiny-NeRF has been trained and the representations were created, we compared
the time taken to do a representation. To measure the time, it was printed every time
a process started and finished the difference between those shows the time taken. The
space in memory is measured by the file space in memory that is required to store
the representations.

The data employed to reconstruct was obtained by capturing in the positions of the
data set, mentioned above, once the captures are done the process of data was done
employing Open3D [21].

The point cloud (Figure 7 (a)) was obtained by mapping the points resultant of a
ray-tracing operation into XYZ or 3D space, those points are concatenated and finally
filtrated to avoid noise in the reconstruction. The experiment took about 2 seconds and
the memory space needed is 12 MB.

The resultant voxel map (Figure 7 (b)) was created with the voxel carving method
which not only reconstructs the surface of an object, it creates a voxel map that is a
cube of certain dimensions and according to the visualized data, the algorithm carves
the shape into it, creating a solid voxel representation. The experiment took about 166
seconds and the memory space needed is 21.2 MB.

The performed experiments results showed that implicit or neural representation
requires at least 3 times less memory compared with other representations (Table 3).
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Table 3. Comparative of memory size.

Representation Size (MB)
Meshes 4.5
Point cloud 12.0
Voxelization 21.2
Implicit representation 1.5

Table 4. Comparative of time taken to perform a representation.

Representation Time (s)
Meshes 28800
Point cloud 2
Voxelization 166
Implicit representation 1008

In terms of time to process a representation, point clouds and voxel maps build the
representations in about 6 times less time than the implicit representations (Table 4).

6 Conclusions and Future Work

This paper tackles the trend research topic, neural rendering, which has many advances
in graphics generation. We compare a simplified version of NeRF with different
volume representations commonly used in robotics and vision reconstruction tasks, all
compared in terms of memory space and time to build representations.

First, we experimented with Tiny-NeRF that computes the colors over a certain
position with a viewing direction; the experiments were conducted by a grid search
looking to perform good representations of an object. In addition, we perform a
reconstruction using voxels and point clouds. The comparison, in terms of memory
space and time, shows that the Tiny-NeRF architecture (MLP) requires less memory
but takes more time to build a representation.

On the other hand, this experiment showed that the neural representation relies on
the fine-tuning of the variables implied in the training of the MLP. We believe that the
results of the experiments can offer some relevant information or considerations to take
when a reconstruction task is needed. In a future work we will experiment with more
objects and with a mobile manipulator robot.
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14. Tang, D., Singh, S., Chou, P.A., Häne, C., Dou, M., Fanello, S.R., Taylor, J., Davidson,
P.L., Guleryuz, O.G., Zhang, Y., Izadi, S., Tagliasacchi, A., Bouaziz, S., Keskin, C.: Deep
Implicit Volume Compression. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1293–1303 (2020). DOI: 10.1109/CVPR42600.2020.00137.

15. Tang, J., Lei, J., Xu, D., Ma, F., Jia, K., Zhang, L.: Sign-Agnostic CONet: Learning Implicit
Surface Reconstructions by Sign-Agnostic Optimization of Convolutional Occupancy
Networks. In: International Conference on Computer Vision, pp. 1–16 (2021)

16. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla,
R., Simon, T., Saragih, J.M., Nießner, M., Pandey, R., Fanello, S.R., Wetzstein, G., Zhu, J.Y.,
Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D.B., Zollhöfer, M.: State of the Art
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